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Abstract. All the correlation functions in the free-fermion 32-vertex model are calculated. 

1. Introduction 

Recently, new calculational methods (Samuel 1978a, b, 1979a) have been developed to 
attack statistical mechanics problems. The methods cover a wide range of interesting 
systems. Among them are the d-dimensional king model, the two-dimensional 
ferroelectric vertex models, dimer models, and polymer systems. The techniques are 
neither limited to two dimensions nor to solvable systems: they can be applied to 
unsolvable models via interesting approximation schemes (Samuel 1979a). The idea is 
quite simple: statistical mechanics systems are written as fermionic field theories. In 
contrast to previous fermionisations (Green and Hurst 1964, Schultz et a1 1964, Hurst 
1966), this is done directly by using a path integral formulation. Such an integral is over 
anticommuting variables (Berezin 1966). These anticommuting variables are the new 
tools. They are very powerful mathematically and generate both exact results and new 
approximation schemes. In certain cases, the fermionic action is quadratic, in which 
case the model is exactly solvable. This happens for all models previously solvable via 
Pfaffian methods (Kasteleyn 1961, 1963, Montroll et a1 1963, Green and Hurst 1964, 
Montroll 1964, 1968). In fact, it is known that an integral over a quadratic fermionic 
action is a Pfaffian (Berezin 1966, Hurst 1966, Samuel 1978a). The anticommuting 
variables, however, have many advantages over the Pfaffian methods. They are easier 
to manipulate, technical problems such as minus signs are easier to handle, and 
computations are more rapid and more simple. More importantly, anticommuting 
variables can attack unsolvable models (Samuel 1979a) not accessible to Pfaffian 
methods. 

This paper considers the 32-vertex model of Sacco and Wu (1975). They have 
computed the partition function and discussed its phase structure. This exactly solvable 
model has a quadratic fermion action. This paper computes all the correlation 
functions. This has already been done for the two-dimensional Ising model (Samuel 
1978b) and the free-fermion eight-vertex model (Samuel 1979a) where anticommuting 
variables yield a simple set of computational rules. Thus, all correlation functions of 
these two models are known. The purpose of this short paper is to extend the results to 
the 32-vertex model. 

The technique is simple and applicable to any model solvable by the old Pfaffian 
methods. First, determine the quadratic action. Second, go to momentum space via 
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Fourier transform and calculate the two-point momentum space anticommuting vari- 
able correlation functions. Then return to coordinate space and determine the two- 
point coordinate space anticommuting variable correlation functions. Finally, relate 
physical correlations to anticommuting variable ones and use the general formulae for 
free fermionic field theories. 

The anticommuting variables are powerful mathematically but have little physical 
interpretation. Therefore, the new methods are useful computationally but only 
indirectly useful for physical considerations. Physical intuition and other input are 
necessary to determine the phase structure. For this reason this paper emphasises the 
mathematical aspects of the 32-vertex model. The physical properties have been 
discussed by Sacco and Wu (1975), to which the reader is referred. 

The 32-vertex model places bonds on the edges of a triangular lattice. An even 
number of bonds (or solid lines) must be incident to each site (see Sacco and Wu (1975) 
for a more complete description of the model). This is equivalent to drawing closed 
polygons on the triangular lattice such that polygonal sides cannot overlap. Polygons 
may intersect themselves or other polygons at a vertex. The anticommuting variable 
action draws these polygons. Because sides cannot overlap anticommuting variables 
are ideal: sides constructed out of them cannot overlap because the square of an 
anticommuting variable is zero (a sort of Pauli exclusion principle). The anticommuting 
variable action is discussed in the Appendix. 

There are 32 possible configurations at a vertex. These are displayed in figure 1 of 
Sacco and Wu (1975). By appropriately replacing dotted and solid lines by arrowed 
lines a ferroelectric model is obtained. The general 32-vertex model assigns arbitrary 
weights (Boltzmann factors) to the 32 possibilities. Sacco and Wu denote the weights by 
fo, 7o,fii and Ei (i  < j and i and j range from 1 to 6) (see figure 1 of Sacco and Wu (1975)). 
The partition function is a sum over all possible configurations weighted by a product of 
the vertex Boltzmann factors. The most general vertex model is not yet exactly 
solvable. Constraints must be imposed. These are called the free-fermion constraints. 
They guarantee that the anticommuting variable action involves only quadratic terms 
and not quartic ones. The constraints are 

Hence 16 vertex weights (To and f,i for i < j )  are determined in terms of the other 16 (fo 
andfii for i < j ) .  In addition, one may multiply the partition function by a constant to fix 
one of the weights. We choose 

Although the model of Sacco and Wu (1975) is not the most general 32-vertex model, it 
still has 15 free parameters. It is the most general easily solvable model on a triangular 
lattice. 

This paper adopts the conventions and notation of Sacco and Wu (1975). Study of 
this reference is recommended before reading this paper. Not only will this familiarise 
the reader with the notation, but it will provide a framework for the physics, phase 
structure and nature of the 32-vertex model. 
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For convenience distort the triangular lattice into the lattice of figure 1. Now 
vertices lie on integer lattice sites and their location can be specified by two Cartesian 
coordinates (a ,  p). 

Figure 1. The lattice for the 32-vertex model. 

The weight of a configuration will be used to denote the type of vertex configuration. 
Saying that configuration f o  (the first diagram of figure 1 of Sacco and Wu (1975)) occurs 
at (a ,  p )  means that all lines incident to this vertex are dotted. 

Section 2 contains the results: all the correlation functions are given in equation 
(2.9). The partition function is given in equation (2.5) and agrees with Sacco and Wu 
(1975). Section 2 contains no detailed computations (for details see the Appendix). 
Instead, only definitions needed to understand equation (2.9) are presented. For this 
reason, Q 2 can be read without knowledge of the anticommuting variable methods. The 
Appendix discusses the anticommuting variable action, the relation to the 128-vertex 
model (Samuel 1979b), the physical vertex operators and the computational details. 
The method is quite general and applicable to any model solvable by Pfaffian methods. 
Section 3 contains a brief summary. 

2. The correlation functions 

The main result of this paper, the calculation of the physical correlation functions in the 
32-vertex model, is presented in this section. Let 

p = p u : p l  (c ) (c ad31 J... (C",) ... am& (2.1) 

be the probability that configurations (c1) through (c,) appear at lattice sites ( a ~ ,  PI) 
through (a,, Pm). The abbreviation, P, will be used in lieu of P&"$;:%Lp,,, with the 
superscripts (cl), . . . , (c,) and the subscripts alp1, . . . , amp,  understood. Each (c,) 
stands for fo, an &, an f i i  or f o .  The quantities in equation (2.1) are the physical 
correlation functions. They are all calculated (in equation (2.9)) in terms of a Pfaffian of 
a 6 m  x 6 m  matrix. 
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Define a matrix, M, by 

MI, = ( - l )L+Jf l /  +FI / (PX,  p y ) .  (2.2) 

The fi, are the same quantities as in Sacco and Wu (1975) for i < j .  For i > j  define 
fI, = -f,l. The non-zero Fz,'s are 

(2.3) 

D(px, P,) = det M ( p x ,  p , ) .  (2.4) 

The determinant, D, has been computed by Sacco and Wu (1975) and enters in the free 
energy per unit volume: 

In Z = $ I 71 dp, dp, In D(px,  p , ) .  
1 

volume -71 277 277 (2.5) 

The thermodynamic properties of the 32-vertex model were extracted by Sacco and Wu 
using equation (2.5). 

Define a set of quantities 

aij(px, p y )  = -aji(px* p y )  (M-l)ij 
- cofactor of Mij(px,  p , )  

m p x ,  PY) 
- 

and 

The superscripts i and j run from 1 to 6. The subscripts (a ,  p )  refer to lattice locations as 
in equation (2.1). There are thus six 77's per site. For notational convenience use the 
abbreviations 

(2.8) 1 
7 6 s - 6 t l  I v a , p ,  

fors  = 1 to m and 1 = 1 to 6. According to equation (2.8) the first 6 77's at ( a l ,  pl)  have 
been relabelled ql, v2, . . . , 776; The next 6 ~ ' s  at (a2, p2) have been relabelled v7, q8, 
. . . , q12; and so on. 

The configuration probability, P, in equation (2.1) is 

P = ( fi F'cs))PfG,  
s = l  

(2.9) 

where Pf stands for Pfaffian and 

Gij 3 (vjvj) + Aij (2.10) 

for i and j equal to 1 through 6m. The first term, (vivi), is the quantity defined in 



Correlation functions in the 32-vertex model 215 

equation (2.7) using the abbreviations in equation (2.8). It remains to define F"' and 
A,, : 

F f o  =To = - F f o  

(2.11) 

The A,, are more awkward to define. A,, is antisymmetric in i and j so that G in equation 
(2.10) is an antisymmetric matrix. It is useful to group the i and j indices in clusters of 
six as in equation (2.8). The integers 1, 2, 3, 4, 5 and 6 compose the first cluster (and 
refer to the first vertex (a1, PI) in equation (2.1)); the integers 7, 8, 9, 10, 11 and 12 
compose the second cluster (and refer to the second vertex); etc. A,, vanishes if i and j 
are of different clusters: 

FFu ( - 1 ) , + I T f  11 1, -Ffv i < j .  

i = 6s -6  + 1 
j = 6s'-6 + I '  A . .  = 0 if S Z S '  (2.12) 

where 1 and 1' range from 1 to 6. In equation (2.12) i would be a member of the sth 
cluster, whereas j would be a member of the s'th cluster. It is only necessary to define Aii 
for i and j in the same sth cluster. This depends on the configuration (c,) associated with 
this cluster. 

Table 1. Summary of Aii's and F's. Aii and F depend on the type of vertex configuration. In 
the first column are the 32 possible configurations; in the second and third columns are the 
corresponding Aji and F. Actually, column two displays Aii for the first cluster so that 
subscripts range from 1 to 6. To obtain the Aii for the sth cluster shift i and j by 6s--6. 

Configuration Aii F 

If (c,) = 7 0 ,  

A , ,  = 0 

for all i and j in the sth cluster, i.e., for i, j = 6 s  -6+ 1 ( 1  = 1, 2, . . . , 6). 
If (c,) = Tab  (a  < b ) ,  

( - l ) a + b + l  i = 6s - 6 + a  
j = 6s - 6 +  b. 

A . .  = for 
f a b  

Aii = 0 for all other i, j in the sth cluster, for i < j .  

(2.13) 

(2.14) 



i = 6s - 6 +  l 
j = 6s - 6 +  n 

c < d  
l < n  

for 

i = 6 s - 6 + a  or 6 s - 6 + b  
j = 6 s - 6 + a  or 6 s -6+b ,  

i = 6s - 6 +  l 
j = 6s - 6 + n  1<n. 

i < j  for 

(2.15) 

(2.16) 

For i > j Aii 5 -Aji. In equation (2.15) Eablncd is the completely antisymmetric tensor 
with €123456 = 1. 

3. Conclusion 

This paper has calculated all the correlation functions in the free-fermion 32-vertex 
model by employing the newly developed anticommuting variable techniques. The 
emphasis was on the mathematical properties. Analysis of the correlation functions 
(equation (2.9)) near the critical regions awaits further study. 
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Appendix. Grassmann integral formulation 

This section is intended for those familiar with the anticommuting variable techniques 
(Samuel 1978a, b, 1979a). 

The partition function for the 32-vertex model can be expressed as 

4 1  5 2  6 3  +E (77ap77,+1p + 77apVa+lp+l  + 77ap77,p+1). 
4 

1 2  6 There are six anticommuting variables per (a, p )  site: vap,  qaP,  . . . , qap.  The pair ( a ,  
p )  represents the Cartesian coordinates of the variable on the lattice of figure 1. 
Equation (A.l)  is an integral over all anticommuting variables at all sites and equation 
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(A.2) is the anticommuting variable action. Because the action is quadratic the model is 
solvable. This action draws closed polygons on the lattice of figure 1 (it should be noted 
that in regard to the references (Samuel 1978a, 1979b) equation (A.l)  draws the 
polygons constructed out of the dotted (as opposed to solid) lines of figure 1 of Sacco 
and Wu (1975)). The first term in equation (A.2) contains the corners and the 
monomers, while the second term draws the sides of the polygons. It is easy to verify 
that equations (A.l )  and (A.2) produces the weights of the vertex configurations of 
figure 1 of Sacco and Wu (1975). The only complication is the overall sign due to 
anticommuting variable reordering. This is a subcase of the 128-vertex model (Samuel 
1979b) and overall signs were determined in appendix A of Samuel (1979b). With 
regard to this reference the superscripts on the 77's which determine the type of variable 
correspond to 

1 t . h  4-ht 

2-d 6-vt 64.3) 

34+v 5*di 

where h, d and v stand for horizontal, vertical and diagonal (see Samuel 1979b), the 
three directions in figure 1. 

To solve the 32-vertex model, go to momentum space by writing 

where V is the number of sites, p x  and py are a discrete set of lattice momenta, and 
a"'(px, p , )  are anticommuting variables in momentum space. It is useful to redefine 

in which case the action in momentum space becomes 

where M(px ,  p , )  is the matrix defined in equation (2.2). It immediately follows that the 
partition function in the thermodynamic limit is given by equations (2.4) and (2.5). The 
anticommuting variable technique has solved this model in just a few lines of algebra. 

Another consequence of equation (A.6) is that the momentum space correlation 
functions, ( a i ( p x ,  p , )  u i t ( p x ,  p , ) ) ,  are given by ( M ( p x ,  py))G1, i.e., the quantities in 
equation (2 .6) .  A calculation in coordinate space yields equation (2.7). Equations (2.7) 
are the anticommuting variable correlations. These quantities are useful to know 
because operators which produce vertex configurations can be constructed out of the 
anticommuting variables: 

- 1  2 3 4 5  6 
053 = -foTap77ap77ap77ap777ap77,p 
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When an operator 05; is inserted in the integrand of equation (A.l), the configuration 
(c) must occur ai the (a, site. In other words, the probability defined in equation (2.1) 
is 

where the expectation is taken with respect to equation (A.1). Equation (2.9) as well as 
the definitions of and Aii follow from equations (A.7) and (A.8). 
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